从两个点出发轻松搞定距离公式推导


要推导从两个点出发的距离公式,我们首先需要明确几个基本概念和假设。

1. 定义:

- 设两个点分别为 \( A(x_1, y_1) \) 和 \( B(x_2, y_2) \)。

- 距离公式通常指的是两点之间的直线距离,即欧几里得距离。

2. 假设:

- 平面上两点之间的距离可以通过勾股定理来计算。

- 假设 \( x_1 \) 和 \( x_2 \) 是横坐标,\( y_1 \) 和 \( y_2 \) 是纵坐标。

3. 推导步骤:

- 第一步:使用勾股定理计算两点间的距离。

勾股定理公式为:

\[

D = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}

\]

其中 \( D \) 是两点之间的距离。

- 第二步:将 \( x_1 \) 和 \( x_2 \) 替换为横坐标的差值,将 \( y_1 \) 和 \( y_2 \) 替换为纵坐标的差值。

\[

D = \sqrt{((x_2 - x_1) - (x_1 - x_2))^2 + ((y_2 - y_1) - (y_1 - y_2))^2}

\]

- 第三步:展方项并简化表达式。

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2 - 2(x_2 - x_1)(y_2 - y_1) + (x_1 - x_2)^2 + (y_1 - y_2)^2

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]

\[

D^2 = (x_2 - x_1)^2 + (y準則)$^2$

\]