高中数学必备三角函数公式大全,轻松掌握三角变换,秒杀难题!
掌握高中三角函数公式是解决相关问题的关键。以下是一些核心公式,助你轻松应对三角变换,秒杀难题:
1. 基本定义:
- \(\sin \theta = \frac{\text{对边}}{\text{斜边}}\)
- \(\cos \theta = \frac{\text{邻边}}{\text{斜边}}\)
- \(\tan \theta = \frac{\sin \theta}{\cos \theta}\)
2. 同角三角函数基本关系式:
- \(\sin^2 \theta + \cos^2 \theta = 1\)
- \(1 + \tan^2 \theta = \sec^2 \theta\)
- \(1 + \cot^2 \theta = \csc^2 \theta\)
3. 诱导公式(即三角函数的符号变换):
- \(\sin(-\theta) = -\sin \theta\)
- \(\cos(-\theta) = \cos \theta\)
- \(\tan(-\theta) = -\tan \theta\)
- \(\sin(\pi - \theta) = \sin \theta\)
- \(\cos(\pi - \theta) = -\cos \theta\)
- \(\tan(\pi - \theta) = -\tan \theta\)
- \(\sin(\pi + \theta) = -\sin \theta\)
- \(\cos(\pi + \theta) = -\cos \theta\)
- \(\tan(\pi + \theta) = \tan \theta\)
4. 和差角公式:
- \(\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta\)
- \(\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta\)
- \(\cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta\)
- \(\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta\)
- \(\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}\)
- \(\tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}\)
5. 倍角公式:
- \(\sin 2\theta = 2\sin \theta \cos \theta\)
- \(\cos 2\theta = \cos^2 \theta - \sin^2 \theta = 2\cos^2 \theta - 1 = 1 - 2\sin^2 \theta\)
- \(\tan 2\theta = \frac{2\tan \theta}{1 - \tan^2 \theta}\)
6. 半角公式:
- \(\sin \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{2}}\)
- \(\cos \frac{\theta}{2} = \pm \sqrt{\frac{1 + \cos \theta}{2}}\)
- \(\tan \frac{\theta}{2} = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}} = \frac{1 - \cos \theta}{\sin \theta}\)
7. 积化和差公式:
- \(\sin \alpha \cos \beta = \frac{1}{2} [\sin(\alpha + \beta) + \sin(\alpha - \beta)]\)
- \(\cos \alpha \sin \beta = \frac{1}{2} [\sin(\alpha + \beta) - \sin(\alpha - \beta)]\)
- \(\cos \alpha \cos \beta = \frac{1}{2} [\cos(\alpha + \beta) + \cos(\alpha - \beta)]\)
- \(\sin \alpha \sin \beta = -\frac{1}{2} [\cos(\alpha + \beta) - \cos(\alpha - \beta)]\)
8. 和差化积公式:
- \(\sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}\)
- \(\sin \alpha - \sin \beta = 2 \cos \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}\)
- \(\cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2}\)
- \(\cos \alpha - \cos \beta = -2 \sin \frac{\alpha + \beta}{2} \sin \frac{\alpha - \beta}{2}\)
通过熟练掌握这些公式,你可以轻松应对各种三角变换问题,从而在考试中取得优异成绩。不断练习和应用这些公式,你会发现解题变得更加简单和快速。