轻松掌握和角公式,带你一步步揭秘数学小秘密
1. 正弦公式(sin):
- sin(a + b) = sin(a)cos(b) + cos(a)sin(b)
- sin(a - b) = sin(a)cos(b) - cos(a)sin(b)
- sin(a + b) = 2cos^2(/4 - (a/2)) sin(a/2) / 2
- sin(a - b) = 2cos^2(/4 - (a/2)) sin(a/2) / 2
2. 余弦公式(cos):
- cos(a + b) = cos(a)cos(b) - sin(a)sin(b)
- cos(a - b) = cos(a)cos(b) + sin(a)sin(b)
- cos(a + b) = 2sin^2(/4 - (a/2)) cos(a/2) / 2
- cos(a - b) = 2sin^2(/4 - (a/2)) cos(a/2) / 2
3. 正切公式(tan):
- tan(a + b) = tan(a) + tan(b)
- tan(a - b) = tan(a) - tan(b)
- tan(a + b) = 2 (tan(/4 - (a/2)) tan(a/2)) / (1 + tan(a/2)^2)
- tan(a - b) = 2 (tan(/4 - (a/2)) tan(a/2)) / (1 + tan(a/2)^2)
4. 反三角函数(arctan、arcsin、arccos):
- arctan(x) = acos(x) if x > 0, otherwise undefined
- arcsin(x) = asin(x) if x > 0, otherwise undefined
- arccos(x) = acsin(x) if x > 0, otherwise undefined
5. 特殊角的和角公式:
- sin(/6 + x) = sin(x)
- cos(/6 + x) = cos(x)
- tan(/6 + x) = tan(x)
- arctan(x) = atan(x)
- arcsin(x) = asin(x)
- arccos(x) = acos(x)
通过上述公式,我们可以解决许多与角度相关的问题,例如计算三角形的面积、求解直角三角形的边长、计算圆的周长和面积等。掌握这些公式不仅有助于解决实际问题,还能加深对三角函数性质的理解。